Энциклопедический словарь
юного биолога

       

Мейоз

Клетки многоклеточных организмов обычно имеют двойной, или диплоидный (2 п), набор хромосом, так как в зиготу (яйцеклетку, из которой развивается организм) в результате оплодотворения от каждого родителя попадает по одному набору хромосом. Поэтому все хромосомы набора парные, гомологичные — одна от отца, другая от матери. В клетках этот набор сохраняется постоянным благодаря митозу.

Половые клетки (гаметы) — яйцеклетки и сперматозоиды (или спермин у растений) — имеют одинарный, или гаплоидный, набор хромосом (п). Этот набор гаметы получают благодаря мейозу (от греческого слова meiosis — уменьшение). В процессе мейоза происходит одно удвоение хромосом и два деления.— редукционное и эквационное (равное). Каждое из них состоит из ряда фаз: интерфазы, профазы, метафазы, анафазы и телофазы (рис. 1).


Рис. 1. Схема мейоза:
1 — исходная материнская клетка (2п, 2с); 2 — в интерфазе I происходит удвоение (редупликация) гомологичных хромосом (4с). Каждая хромосома состоит из двух хроматид; 3 — в профазе I происходит конъюгация (спаривание) гомологичных хромосом» образование бивалентов; 4 — в метафазе I на экваторе клетки выстраиваются биваленты, образуется веретено деления; 5 — в анафазе I гомологичные хромосомы рас- ходятся к разным полюсам клетки; 6 — дочерние клетки после первого деления. В каждой клетке есть только одна из пары гомологичных хромосом (2с) — редукция числа хромосом; 7 — в метафазе II на экваторе клеток выстраиваются хромосомы, состоящие из двух хроматид; 8 — в анафазе II к полюсам клеток отходят хроматиды; 9 — до- черние клетки после второго деления, в каждой клетке на- бор хромосом уменьшается вдвое (п, с).

В интерфазе I (первого деления) происходит удвоение — редупликация — хромосом. Каждая хромосома после этого состоит из двух идентичных хроматид, соединенных одной центромерой. В профазе I мейоза происходит спаривание (конъюгация) удвоенных гомологичных хромосом, которые образуют биваленты, состоящие из четырех хроматид. В это время происходит спирализация, укорочение и утолщение хромосом. В метафазе I спаренные хромосомы-гомологи выстраиваются на экваторе клетки, в анафазе I они расходятся к ее разным полюсам, в телофазе I клетка делится.

В каждую из двух клеток после первого деления попадает только по одной удвоенной хромосоме от каждой пары гомологичных хромосом, т. е. происходит уменьшение (редукция) числа хромосом вдвое.

После первого деления в клетках проходит короткая интерфаза II (второго деления) без удвоения хромосом. Второе деление идет как митоз. В метафазе II хромосомы, состоящие из двух хроматид, выстраиваются на экваторе клетки. В анафазе II к полюсам расходятся хроматиды. В телофазе II обе клетки делятся. Установлено, что существует прямая зависимость между набором хромосом в ядре (2 п или п) и количеством ДНК в нем (обозначаемом буквой С). В диплоидной клетке ДНК вдвое больше (2С), чем в гаплоидной (С). В интерфазе I диплоидной клетки перед подготовкой ее к делению происходит репликация днк, ее количество удваивается и ста- личество ДНК в дочерних клетках уменьшается до 2С, после второго деления — до 1С, что соответствует гаплоидному набору хромосом.

Биологический смысл мейоза заключается в следующем. Прежде всего, в ряду поколений сохраняется набор хромосом, свойственный данному виду, так как при оплодотворении сливаются гаплоидные гаметы и восстанавливается диплоидный набор хромосом.

Кроме того, в мейозе происходят процессы, обеспечивающие осуществление основных законов наследственности: во-первых, благодаря конъюгации и обязательному последующему расхождению гомологичных хромосом осуществляется закон чистоты гамет — в каждую гамету попадает только одна хромосома от пары гомологов и, следовательно, только один аллель от пары — А или а, В или в.

Во-вторых, случайное расхождение негомологичных хромосом в первом делении обеспечивает независимое наследование признаков, контролируемых генами, расположенными в разных хромосомах, и приводит к образованию новых комбинаций хромосом и генов (рис. 2).

Рис. 2. Генетическая рекомбинация при случайном расхождении негомологичных хромосом. Осуществление независимого наследования. Поскольку вероятности ориентации I и II вариантов одинаковы, гены А и В распределяются случайно, независимо друг от друга. С равной вероятностью образуется 4 сорта гамет: А В, Ав, а В, ав. Это обеспечивает при случайном оплодотворении независимое наследование признаков, контролируемых генами, расположенными в разных хромосомах. Цифрами обозначены центромеры хромосом.

В-третьих, гены, расположенные в одной хромосоме, проявляют сцепленное наследование. Однако они могут комбинироваться и образовывать новые комбинации генов в результате кроссинговера — обмена участками между гомологичными хромосомами, который осуществляется при их конъюгации в профазе Клетки делятся первого деления (рис 3)

Рис. 3. Генетическая рекомбинация при мейотическом кроссинговере. Из схемы видно, что гены С и D передаются вместе (сцепленно) в тех же сочетаниях, какие были в родительских клетках — CD и cd (некроссоверные гаметы). В части клеток, в которых прошел кроссинговер между генами С и D, образуются новые сочетания генов, отличные от родительских — Cd и cd (кроссоверные гаметы).

Таким образом, можно выделить два механизма образования новых комбинаций (генетической рекомбинации) в мейозе: случайное расхождение негомологичных хромосом и кроссинговер.

 

 

 

Top.Mail.Ru
Top.Mail.Ru