Учебник для 11 класса

ХИМИЯ

       

§ 16. Гидролиз

Вы знаете, что, согласно теории электролитической диссоциации, в водном растворе частицы растворенного вещества взаимодействуют с молекулами воды. Такое взаимодействие может привести к реакции гидролиза (от греч. hydro — вода, lysis — разложение, распад).

Гидролиз — это реакция обменного разложения веществ водой.

Гидролизу подвергаются различные вещества: неорганические — соли, карбиды и гидриды металлов, галогениды неметаллов; органические — галогеналканы, сложные эфиры и жиры, углеводы, белки, полинуклеотиды.

Реакции гидролиза могут протекать обратимо и необратимо. Рассмотрим разные случаи этого процесса и его значение.

Гидролиз органических веществ

1. Гидролиз галогеналканов используют для получения спиртов.

Присутствие щелочи (ОН-) позволяет «связать» получающуюся кислоту и сместить равновесие в сторону образования спирта.

2. Гидролиз сложных эфиров протекает обратимо в кислотной среде (в присутствии неорганической кислоты) с образованием соответствующего спирта и карбоновой кислоты:

Для смещения химического равновесия в сторону продуктов реакции гидролиз проводят в присутствии щелочи.

Исторически первым примером такой реакции было щелочное расщепление сложных эфиров высших жирных кислот, что привело к получению мыла. Это произошло в 1811 г., когда французский ученый Э. Шеврёль, нагревая жиры с водой в щелочной среде, получил глицерин и мыла — соли высших карбоновых кислот. На основании этого эксперимента был установлен состав жиров, они оказались сложными эфирами, но только «трижды сложными», производными трехатомного спирта глицерина — триглицеридами. А процесс гидролиза сложных эфиров в щелочной среде до сих пор называют омылением.

Например, омыление эфира, образованного глицерином, пальмитиновой и стеариновой кислотами:

Натриевые соли высших карбоновых кислот — основные компоненты твердого мыла, калиевые соли — жидкого мыла.

Французский химик М. Бертло в 1854 г. осуществил реакцию этерификации и впервые синтезировал жир. Следовательно, гидролиз жиров (как и других сложных эфиров) протекает обратимо. Уравнение реакции можно упрощенно записать так:

В живых организмах происходит ферментативный гидролиз жиров. В кишечнике под влиянием фермента липазы жиры пищи гидролизуются на глицерин и органические кислоты, которые всасываются стенками кишечника, и в организме синтезируются новые, свойственные ему жиры. Они по лимфатической системе поступают в кровь, а затем в жировую ткань. Отсюда жиры поступают в другие органы и ткани организма, где в процессе обмена веществ в клетках опять гидролизуются и затем постепенно окисляются до оксида углерода (IV) и воды с выделением энергии, необходимой для жизнедеятельности.

В технике гидролиз жиров используют для получения глицерина, высших карбоновых кислот, мыла.

3. Как вы знаете, углеводы являются важнейшими компонентами нашей пищи. Причем дисахариды (сахароза, лактоза, мальтоза) и полисахариды (крахмал, гликоген) непосредственно не усваиваются организмом. Они, так же как и жиры, сначала подвергаются гидролизу.

Гидролиз дисахаридов, например сахарозы, можно представить следующим уравнением:

Гидролиз крахмала идет ступенчато, схематически его можно изобразить так:

Схема 4
Превращение углеводов в живых организмах

или более кратко:

В лабораторных и промышленных условиях в качестве катализатора этих процессов используют кислоту. Реакции осуществляют при нагревании.

Реакцию гидролиза крахмала до глюкозы при каталитическом действии серной кислоты осуществил в 1811 г. русский ученый К. С. Кирхгоф.

В организме человека и животных гидролиз углеводов происходит под действием ферментов (схема 4).

Промышленным гидролизом крахмала получают глюкозу и патоку (смесь декстринов, мальтозы и глюкозы). Патоку применяют в кондитерском деле.

Декстрины как продукт частичного гидролиза крахмала обладают клеящим действием: с ними связано появление корочки на хлебе и жареном картофеле, а также образование плотной пленки на накрахмаленном белье под действием горячего утюга.

Еще один известный вам полисахарид — целлюлоза — также может гидролизоваться до глюкозы при длительном нагревании с минеральными кислотами. Процесс идет ступенчато, но кратко его можно записать так:

Этот процесс лежит в основе многих гидролизных производств. Они служат для получения пищевых, кормовых и технических продуктов из непищевого растительного сырья — отходов лесозаготовок, деревообработки (опилки, стружка, щепа), переработки сельскохозяйственных культур (соломы, шелухи семян, кочерыжек кукурузы и т. д.).

Техническими продуктами таких производств являются глицерин, этиленгликоль, органические кислоты, кормовые дрожжи, этиловый спирт, сорбит (шестиатомный спирт).

4. Вы знаете, что белки-биополимеры — основа жизни всех живых организмов (от вируса до человека) — состоят главным образом из α-аминокислот. Установление последовательности расположения остатков аминокислот, составляющих молекулу белка, является первоначальной целью при исследовании его структуры. И установить ее помогает ступенчатый гидролиз белка, который осуществляют при нагревании с кислотами или щелочами, а также при действии ферментов.

Так как все белки являются полипептидами, то полный гидролиз, например, трипептида можно представить так:

Можно представить себе и обратный процесс — процесс образования трипептида из аминокислот:

Процесс образования полипептида относится к реакциям поликонденсации. Аналогичные реакции гидролиза и поликонденсации осуществляются и в организме (схема 5).

Схема 5
Превращение белков в живых организмах

Известна обширная группа ферментов (гидролаз), катализирующих высокоселективный гидролиз молекул природных соединений. На таких процессах основано большинство методов изучения строения биополимеров.

5. Неизмеримо важную роль в организме играет процесс гидролиза аденозинтрифосфорной кислоты (АТФ). Это вещество служит источником энергии для всевозможных биохимических реакций (построения белка, сокращения мышц и др.). При гидролизе АТФ до адено-зиндифосфорной кислоты (АДФ) энергия высвобождается:

Обратный процесс — образование АТФ из АДФ — протекает с поглощением энергии. Следовательно, АТФ — это универсальное энергетическое вещество клетки, своего рода энергетический «консерв», который клетка использует по мере надобности.

 

 

 

Top.Mail.Ru
Top.Mail.Ru