Учебник для 11 класса

Информатика

       

§ 18. Модели статистического прогнозирования

О статистике и статистических данных

Рассмотрим способ нахождения зависимости частоты заболеваемости жителей города бронхиальной астмой от качества воздуха (третий пример из сформулированных в начале предыдущего параграфа). Любому человеку понятно, что такая зависимость существует. Очевидно, что чем хуже воздух, тем больше больных астмой. Но это качественное заключение. Его недостаточно для того, чтобы управлять уровнем загрязненности воздуха. Для управления требуются более конкретные знания. Нужно установить, какие именно примеси сильнее всего влияют на здоровье людей, как связана концентрация этих примесей в воздухе с числом заболеваний. Такую зависимость можно установить только экспериментальным путем: посредством сбора многочисленных данных, их анализа и обобщения.

При решении таких проблем на помощь приходит статистика.

Статистика — наука о сборе, измерении и анализе массовых количественных данных.

Существуют медицинская статистика, экономическая статистика, социальная статистика и другие. Математический аппарат статистики разрабатывает наука под названием математическая статистика.

Рассмотрим пример из области медицинской статистики.

Известно, что наиболее сильное влияние на бронхиально-легочные заболевания оказывает угарный газ — монооксид углерода. Поставив цель определить эту зависимость, специалисты по медицинской статистике проводят сбор данных. Они собирают сведения из разных городов о средней концентрации угарного газа в атмосфере и о заболеваемости астмой (число хронических больных на 1000 жителей). Полученные данные можно свести в таблицу, а также представить в виде точечной диаграммы (рис. 3.3).*

Рис. 3.3. Табличное и графическое представление статистических данных

Статистические данные всегда являются приближенными, усредненными. Поэтому они носят оценочный характер, но верно отражают характер зависимости величин. И еще одно важное замечание: для достоверности результатов, полученных путем анализа статистических данных, этих данных должно быть много.

Из полученных данных можно сделать вывод, что при концентрации угарного газа до 3 мг/м3 его влияние на заболеваемость астмой несильное. С дальнейшим ростом концентрации наступает резкий рост заболеваемости.

А как построить математическую модель данного явления? Очевидно, нужно получить формулу, отражающую зависимость количества хронических больных Р от концентрации угарного газа С. На языке математики это называется функцией зависимости Р от С: Р(С). Вид такой функции неизвестен, ее следует искать методом подбора по экспериментальным данным.

Понятно, что график искомой функции должен проходить близко к точкам диаграммы экспериментальных данных. Строить функцию так, чтобы ее график точно проходил через все данные точки (рис. 3.4, а), не имеет смысла. Во-первых, математический вид такой функции может оказаться слишком сложным. Во-вторых, уже говорилось о том, что экспериментальные значения являются приближенными.

Рис. 3.4. Два варианта построения графической зависимости по экспериментальным данным

Отсюда следуют основные требования к искомой функции:

  • она должна быть достаточно простой для использования ее в дальнейших вычислениях;
  • график этой функции должен проходить вблизи экспериментальных точек так, чтобы отклонения этих точек от графика были минимальны и равномерны (рис. 3.4, б).

Полученную функцию, график которой приведен на рис. 3.4, б, в статистике принято называть регрессионной моделью.

Метод наименьших квадратов

Получение регрессионной модели происходит в два этапа:

  1. подбор вида функции;
  2. вычисление параметров функции.

Первая задача не имеет строгого решения. Здесь может помочь опыт и интуиция исследователя, а возможен и «слепой» перебор из конечного числа функций и выбор лучшей из них.

Чаще всего выбор производится среди следующих функций:

    у = ах + b — линейная функция;

    у = ах2 + bх + с — квадратичная функция;

    у — а ln(х) + b — логарифмическая функция;

    у = ае — экспоненциальная функция;

    у — ахb — степенная функция.

Квадратичная функция называется в математике полиномом второй степени. Иногда используются полиномы и более высоких степеней, например полином третьей степени имеет вид: у = ах3 + Ьх2 + сх + d.

Во всех этих формулах х — аргумент, у — значение функции, а, Ь, с, d — параметры функции, ln(х) — натуральный логарифм, е — константа, основание натурального логарифма.

Если вы выбрали (сознательно или наугад) одну из предлагаемых функций, то далее нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам. Что значит «располагалась как можно ближе»? Ответить на этот вопрос значит предложить метод вычисления параметров. Такой метод был предложен в XVIII веке немецким математиком К. Гауссом и называется методом наименьших квадратов (МНК). Суть его заключается в следующем: искомая функция должна быть построена так, чтобы сумма квадратов отклонений у-координат всех экспериментальных точек от у-координат графика функции была минимальной.

Мы не будем здесь производить подробное математическое описание метода наименьших квадратов. Достаточно того, что вы теперь знаете о существовании такого метода. Он очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую (в том числе и из рассмотренных выше) функцию. А вот будет ли она нас удовлетворять, это уже другой вопрос — вопрос критерия соответствия. На рис. 3.5 изображены три функции, построенные методом наименьших квадратов по приведенным экспериментальным данным.

Рис. 3.5. Три функции, построенные по МНК

Эти рисунки получены с помощью табличного процессора Microsoft Excel. График регрессионной модели называется трендом. Английское слово trend можно перевести как «общее направление» или «тенденция» .

Уже с первого взгляда хочется отбраковать вариант линейного тренда. График линейной функции — это прямая. Полученная по МНК прямая отражает факт роста заболеваемости от концентрации угарного газа, но по этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды правдоподобны. Теперь пора обратить внимание на надписи, присутствующие на графиках. Во-первых, это записанные в явном виде искомые функции — регрессионные модели:

На графиках присутствует еще одна величина, полученная в результате построения трендов. Она обозначена как R2. В статистике эта величина называется коэффициентом детерминированности. Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Если он равен 1, то функция точно проходит через табличные значения, если 0, то выбранный вид регрессионной модели предельно неудачен. Чем R2 ближе к 1, тем удачнее регрессионная модель.

Из трех выбранных моделей значение R2 наименьшее у линейной. Значит, она самая неудачная (нам и так это было понятно). Значения же R2 у двух других моделей достаточно близки (разница меньше 0,01). Если определить погрешность решения данной задачи как 0,01, по критерию R2 эти модели нельзя разделить. Они одинаково удачны. Здесь могут вступить в силу качественные соображения. Например, если считать, что наиболее существенно влияние концентрации угарного газа проявляется при больших величинах, то, глядя на графики, предпочтение следует отдать квадратичной модели. Она лучше отражает резкий рост заболеваемости при больших концентрациях примеси.

Интересный факт: опыт показывает, что если человеку предложить на данной точечной диаграмме провести «на глаз» прямую так, чтобы точки были равномерно разбросаны вокруг нее, то он проведет линию, достаточно близкую к той, что дает МНК.

Прогнозирование по регрессионной модели

Мы получили регрессионную математическую модель и можем прогнозировать процесс путем вычислений. Теперь можно оценить уровень заболеваемости астмой не только для тех значений концентрации угарного газа, которые были получены путем измерений, но и для других значений. Это очень важно с практической точки зрения. Например, если в городе планируется построить завод, который будет выбрасывать в атмосферу угарный газ, то, рассчитав его возможную концентрацию, можно предсказать, как это отразится на заболеваемости астмой жителей города.

Существует два способа прогнозирования по регрессионной модели. Если прогноз производится в пределах экспериментальных значений независимой переменной (в нашем случае это концентрация угарного газа С), то это называется восстановлением значения.

Прогнозирование за пределами экспериментальных данных называется экстраполяцией.

Имея регрессионную модель, легко прогнозировать, производя расчеты с помощью электронных таблиц. Выберем для нашего примера в качестве наиболее подходящей квадратичную зависимость. Построим следующую электронную таблицу:

Подставляя в ячейку А2 значение концентрации угарного газа, в ячейке В2 будем получать прогноз заболеваемости. Вот пример восстановления значения:

Заметим, что число, получаемое по формуле в ячейке В2, на самом деле является дробным. Однако не имеет смысла считать число людей, даже среднее, в дробных величинах. Дробная часть удалена — в формате вывода числа указано 0 цифр после запятой.

Экстраполяционный прогноз выполняется аналогично.

Табличный процессор дает возможность производить экстраполяцию графическим способом, продолжая тренд за пределы экспериментальных данных. Как это выглядит при использовании квадратичного тренда для С = 7, показано на рис. 3.6.

Рис. 3.6. Квадратичный тренд с экстраполяцией

В ряде случаев с экстраполяцией надо быть осторожным. Применимость всякой регрессионной модели ограничена, особенно за пределами экспериментальной области. В нашем примере при экстраполяции не следует далеко уходить от величины 5 мг/м3. Вполне возможно, что далее характер зависимости существенно меняется. Слишком сложной является система «экология — здоровье человека», в ней много различных факторов, которые связаны друг с другом. Полученная регрессионная функция является всего лишь моделью, экспериментально подтвержденной в диапазоне концентраций от 2 до 5 мг/м3. Что будет вдали от этой области, мы не знаем. Всякая экстраполяция держится на гипотезе: «предположим, что за пределами экспериментальной области закономерность сохраняется». А если не сохраняется?

Квадратичная модель в данном примере в области малых значений концентрации, близких к 0, вообще не годится. Экстраполируя ее на С = 0 мг/м3, получим 150 человек больных, т. е. больше, чем при 4 мг/м3. Очевидно, это нелепость. В области малых значений С лучше работает экспоненциальная модель. Кстати, это довольно типичная ситуация: разным областям данных могут лучше соответствовать разные модели.

Система основных понятий

Вопросы и задания

  1. а) Что такое статистика?

    б) Являются ли результаты статистических расчетов точными?

    в) Что такое регрессионная модель?

  2. Какие из следующих величин можно назвать статистическими: температура вашего тела в данный момент; средняя температура в вашем регионе за последний месяц; максимальная скорость, развиваемая данной моделью автомобиля; среднее число осадков, выпадающих в вашем регионе в течение года?
  3. а) Для чего используется метод наименьших квадратов?

    б) Что такое тренд?

    в) Как располагается линия тренда, построенная по МНК, относительно экспериментальных точек?

    г) Может ли тренд, построенный по МНК, пройти выше всех экспериментальных точек?

  4. а) В чем смысл параметра R2? Какие значения он принимает?

    б) Какое значение примет параметр R2, если тренд точно проходит через экспериментальные точки?

  5. По данным из следующей таблицы постройте с помощью Excel линейную, квадратичную, экспоненциальную и логарифмическую регрессионные модели. Определите параметры, выберите лучшую модель.

  1. а) Что подразумевается под восстановлением значения по регрессионной модели ?

    б) Что такое экстраполяция?

  2. Соберите данные о средней дневной температуре в вашем городе за последнюю неделю (10 дней, 20 дней). Оцените (хотя бы на глаз), годится ли использование линейного тренда для описания характера изменения температуры со временем. Попробуйте путем графической экстраполяции предсказать температуру через 2-5 дней.
  3. Придумайте свои примеры практических задач, для которых имело бы смысл выполнение восстановления значений и экстраполяционных расчетов.

* Приведенные в примере данные не являются официальной статистикой, однако правдоподобны.

Top.Mail.Ru
Рейтинг@Mail.ru