Учебник для 10-11 классов

ТЕХНОЛОГИЯ

       

Лучевые технологии

В последние десятилетия широкое распространение получили лучевые методы обработки, использующие для воздействия на заготовку лазерный и электронный лучи, которые обеспечивают плотность энергии на несколько порядков выше, чем другие источники (см. таблицу).

Плотность энергии различных тепловых источников

Большие плотности энергии обеспечиваются при небольшой мощности излучения (0,1-100 кВт) за счет фокусировки лучей на малой площади — около 0.1 мм2. Поэтому лучевые методы обработки используют для вырезки высокоточных (прецизионных) деталей, получения отверстий малого размера (менее 0,5 мм), разрезания труднообрабатываемых материалов, точной сварки, упрочнения и легирования поверхностей деталей.

Лазерная обработка материалов проводится при помощи светового луча, излучаемого оптическим квантовым генератором (лазером), и основана на его термическом действии (рис. 16).

Рис. 16. Схема лезерной обработки: 1 — оптический квантовый генератор; 2 — диафрагма; 3 — оптическая система; 4 — защитное стекло; 5 — деталь

При попадании на поверхность световой луч частично поглощается ею и частично отражается от нее. Поглощение поверхностью энергии приводит к ее нагреву, температура в точке приложения луча составляет от 2000 до 60 000 °С. Такая температура достаточна для расплавления и превращения в пар любого материала. Температура тем больше, чем большей поглощающей и меньшей отражающей способностью обладает обрабатываемый материал, а также чем меньше его теплопроводность и теплоемкость.

Разновидности лазерной обработки — пробивка отверстий, контурная резка, упрочнение и легирование деталей машин и инструментов, сварка, резание с лазерным подогревом.

Электронно-лучевая обработка использует тепловую энергию, выделившуюся при столкновении быстродвижущихся электронов с обрабатываемым материалом. При столкновении ускоренного электронного потока с твердым телом 90 % кинетической энергии электронов переходит в тепловую энергию. Повышая скорость движения электронов и их кинетическую энергию, а также увеличивая число электронов, движущихся в данном объеме, можно создавать чрезвычайно высокую концентрацию тепловой энергии во времени и пространстве, приводящую к нагреву, плавлению, испарению и тепловому взрыву вещества.

При электронно-лучевой обработке на малом участке обрабатываемой поверхности достигается такая высокая плотность энергии, которая практически недостижима при других методах нагрева. При этом возникает эффект «кинжального» (глубинного) проплавления. Образуется узкий и глубокий канал, соотношение его глубины к ширине достигает 20 : 1. Поэтому возможно проплавление материалов большой толщины (до 200 мм) при узкой зоне термического воздействия.

Электронно-лучевая обработка проводится в вакууме, который является отличной защитной средой, препятствующей окислению расплавленного материала. Перемещением электронного луча можно легко управлять, его можно расфокусировать, можно «запереть», что позволяет выполнять обработку по сложной траектории и с пропусками. Электронный луч можно направить в узкую щель и произвести обработку в местах, не доступных для других способов обработки. Небольшие площади обработки и узкая зона прогрева позволяют обрабатывать миниатюрные детали, получать малые отверстия.

Для электронно-лучевой обработки используют различные устройства, основой которых является так называемая электронная пушка.

Особенности электронно-лучевой технологии используются при сварке (электронно-лучевая сварка) различных материалов: стекла, молибдена, тантала, ниобия, вольфрама, инконеля, бериллия и др.

Электронно-лучевое резание и прошивка применяются:

  • для изготовления тонких пазов, щелей и прорезей размерами от нескольких десятков микрометров в деталях малой толщины (пленки, фольги);
  • для сверления отверстий малых диаметров (100 мкм) в кварцевых пластинах, иглах и рубиновых камнях для часовых подшипников, фильерах для производства искусственных волокон и т. д.;
  • при разрезании полупроводников и ферритов для производства электронной аппаратуры.

Электронно-лучевая плавка позволяет производить расплавление любых тугоплавких металлов в вакууме без опасности окисления или загрязнения расплавляемого металла газами и другими примесями. Электроннолучевую плавку применяют для получения особо чистых тугоплавких материалов.

Основные понятия, термины

Лазерная обработка, электронно-лучевая сварка, резание и прошивка, электронно-лучевая плавка.

 

 

 

Top.Mail.Ru
Top.Mail.Ru